Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 63(1): 2, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978559

RESUMO

Purpose: Our studies in mouse eye lenses demonstrate that ephrin-A5 and EphA2 are needed for normal epithelial cells and lens transparency. We sought to determine whether EphA2 and ephrin-A5 are important for lens morphometrics, nucleus formation, and refractive index. Methods: We performed tissue morphometric measurements, electron microscopy, Western blots, and interferometric measurements using an X-ray synchrotron beam source to measure the gradient of refractive index (GRIN) to compare mouse lenses with genetic disruption of EphA2 or ephrin-A5. Results: Morphometric analysis revealed that although there is no change in the overall lens volume, there is a change in lens shape in both EphA2-/- lenses and ephrin-A5-/- lenses. Surprisingly, EphA2-/- lenses had small and soft lens nuclei different from hard lens nuclei of control lenses. SEM images revealed changes in cell morphology of EphA2-/- fiber cells close to the center of the lens. Inner EphA2-/- lens fibers had more pronounced tongue-and-groove interdigitations and formed globular membrane morphology only in the deepest layers of the lens nucleus. We did not observe nuclear defects in ephrin-A5-/- lenses. There was an overall decrease in magnitude of refractive index across EphA2-/- lenses, which is most pronounced in the nucleus. Conclusions: This work reveals that Eph-ephrin signaling plays a role in fiber cell maturation, nuclear compaction, and lens shape. Loss of EphA2 disrupts the nuclear compaction resulting in a small lens nucleus. Our data suggest that Eph-ephrin signaling may be required for fiber cell membrane reorganization and compaction and for establishing a normal GRIN.


Assuntos
Núcleo do Cristalino/crescimento & desenvolvimento , Receptor EphA2/fisiologia , Refração Ocular/fisiologia , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Efrina-A5/fisiologia , Técnicas de Genotipagem , Interferometria , Núcleo do Cristalino/metabolismo , Núcleo do Cristalino/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura , Forma das Organelas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Raios X
2.
Invest Ophthalmol Vis Sci ; 62(15): 3, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854885

RESUMO

Purpose: Fine focusing of light by the eye lens onto the retina relies on the ability of the lens to change shape during the process of accommodation. Little is known about the cellular structures that regulate elasticity and resilience. We tested whether Eph-ephrin signaling is involved in lens biomechanical properties. Methods: We used confocal microscopy and tissue mechanical testing to examine mouse lenses with genetic disruption of EphA2 or ephrin-A5. Results: Confocal imaging revealed misalignment of the suture between each shell of newly added fiber cells in knockout lenses. Despite having disordered sutures, loss of EphA2 or ephrin-A5 did not affect lens stiffness. Surprisingly, knockout lenses were more resilient and recovered almost completely after load removal. Confocal microscopy and quantitative image analysis from live lenses before, during, and after compression revealed that knockout lenses had misaligned Y-sutures, leading to a change in force distribution during compression. Knockout lenses displayed decreased separation of fiber cell tips at the anterior suture at high loads and had more complete recovery after load removal, which leads to improved whole-lens resiliency. Conclusions: EphA2 and ephrin-A5 are needed for normal patterning of fiber cell tips and the formation of a well-aligned Y-suture with fiber tips stacked on top of previous generations of fiber cells. The misalignment of lens sutures leads to increased resilience after compression. The data suggest that alignment of the Y-suture may constrain the overall elasticity and resilience of the lens.


Assuntos
Elasticidade/fisiologia , Cristalino/fisiologia , Receptor EphA2/fisiologia , Receptor EphA5/fisiologia , Animais , Fenômenos Biomecânicos , Forma Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Transporte Proteico , Transdução de Sinais/fisiologia
3.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445353

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Additionally, the efficacy of targeted molecular therapies with multiple tyrosine kinase inhibitors is limited. In this study, we focused on the cellular signaling pathways common to diverse HCC cells and used quantitative reverse phase protein array (RPPA) and statistical analyses to elucidate the molecular mechanisms determining its malignancy. We examined the heterogeneity of 17 liver cancer cell lines by performing cluster analysis of their expression of CD90 and EpCAM cancer stem cell markers. Gaussian mixture model clustering identified three dominant clusters: CD90-positive and EpCAM-negative (CD90+), EpCAM-positive and CD90-negative (EpCAM+) and EpCAM-negative and CD90-negative (Neutral). A multivariate analysis by partial least squares revealed that the former two cell populations showed distinct patterns of protein expression and phosphorylation in the EGFR and EphA2 signaling pathways. The CD90+ cells exhibited higher abundance of AKT, EphA2 and its phosphorylated form at Ser897, whereas the EpCAM+ cells exhibited higher abundance of ERK, RSK and its phosphorylated form. This demonstrates that pro-oncogenic, ligand-independent EphA2 signaling plays a dominant role in CD90+ cells with higher motility and metastatic activity than EpCAM+ cells. We also showed that an AKT inhibitor reduced the proliferation and survival of CD90+ cells but did not affect those of EpCAM+ cells. Taken together, our results suggest that AKT activation may be a key pro-oncogenic regulator in HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Hepáticas/patologia , Receptor EphA2/fisiologia , Antígenos Thy-1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor EphA2/metabolismo , Transdução de Sinais
4.
Gynecol Oncol ; 163(1): 181-190, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391578

RESUMO

BACKGROUND: Our pilot clinical study of EphA2 inhibitor (dasatinib) plus paclitaxel and carboplatin showed interesting clinical activity in endometrial cancer with manageable toxicity. However, the underlying mechanisms of dasatinib resistance in uterine cancer are unknown. Here, we investigated potential mechanisms underlying resistance to EphA2 inhibitors in uterine cancer and examined the anti-tumor activity of EphA2 inhibitors alone and in combination with a MEK inhibitor. METHODS: We evaluated the antitumor activity of EphA2 inhibitors plus a MEK inhibitor using in vitro and in vivo orthotopic models of uterine cancer. RESULTS: EphA2 inhibitor induced MAPK in dasatinib-resistant uterine cancer cells (HEC-1A and Ishikawa) and BRAF/CRAF heterodimerization in HEC-1A cells. EphA2 inhibitor and trametinib significantly increased apoptosis in cancer cells resistant to EphA2 inhibitors compared with controls (p < 0.01). An in vivo study with the orthotopic HEC-1A model showed significantly greater antitumor response to combination treatment compared with dasatinib alone (p < 0.01). Combination treatment increased EphrinA1 and BIM along with decreased pMAPK, Jagged 1, and c-MYC expression in dasatinib-resistant cells. In addition, Spearman analysis using the TCGA data revealed that upregulation of EphA2 was significantly correlated with JAG1, MYC, NOTCH1, NOTCH3 and HES1 expression (p < 0.001, r = 0.25-0.43). Specifically, MAP3K15 and the NOTCH family genes were significantly related to poor clinical outcome in patients with uterine cancer. CONCLUSIONS: These findings indicate that the MAPK pathway is activated in dasatinib-resistant uterine cancer cells and that EphrinA1-mediated MEK inhibition overcomes dasatinib resistance. Dual targeting of both EphA2 and MEK, combined with chemotherapy, should be considered for future clinical development.


Assuntos
Dasatinibe/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Receptor EphA2/antagonistas & inibidores , Neoplasias Uterinas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dasatinibe/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Pirimidinonas/administração & dosagem , Pirimidinonas/uso terapêutico , Receptor EphA2/fisiologia
5.
Exp Eye Res ; 170: 92-100, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476773

RESUMO

The corneal endothelium is a monolayer of epithelial cells that lines the posterior surface of the cornea and is essential for maintenance of corneal transparency. Wound healing within the corneal endothelium typically occurs through cell spreading and migration rather than through proliferation. The mechanisms that control corneal endothelial cell migration are unclear. In this study we demonstrate that cultures of corneal endothelial cells display reduced migration in scratch wound assays, and reduced levels of E-cadherin mRNA, following suppression of ligand-activated Eph receptor signalling by treatment with lithocholic acid. Two Eph receptors, EphA1 and EphA2, were subsequently detected in corneal endothelial cells, and their potential involvement during migration was explored through gene silencing using siRNAs. EphA2 siRNA reduced levels of mRNA for both EphA2 and N-cadherin, but increased levels of mRNA for both EphA1 and E-cadherin. No effect, however, was observed for EphA2 siRNA on migration. Our results indicate a potential role for Eph receptor signalling during corneal endothelial cell migration via changes in cadherin expression. Nevertheless, defining a precise role for select Eph receptors is likely to be complicated by crosstalk between Eph-mediated signalling pathways.


Assuntos
Movimento Celular/fisiologia , Endotélio Corneano/citologia , Receptor EphA1/fisiologia , Receptor EphA2/fisiologia , Transdução de Sinais/fisiologia , Animais , Caderinas/metabolismo , Linhagem Celular , Sobrevivência Celular , Detergentes/farmacologia , Endotélio Corneano/efeitos dos fármacos , Endotélio Corneano/metabolismo , Efrina-A1/genética , Efrina-A1/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Inativação Gênica , Humanos , Ácido Litocólico/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor EphA1/antagonistas & inibidores , Receptor EphA2/antagonistas & inibidores , Ovinos
6.
Invest Ophthalmol Vis Sci ; 59(1): 393-406, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351356

RESUMO

Purpose: Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal-corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal-corneal epithelial boundary organization. Methods: EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell-cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Results: Ephrin-A1-expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1-expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin-mediated adhesion at heterotypic boundaries. Conclusions: Ephrin-A1/EphA2 signaling complexes play a key role in limbal-corneal epithelial compartmentalization and the response of these tissues to injury.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Compartimento Celular/fisiologia , Efrina-A1/fisiologia , Efrina-A2/fisiologia , Epitélio Corneano/citologia , Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Comunicação Celular/fisiologia , Células Cultivadas , Epitélio Corneano/metabolismo , Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Humanos , Imuno-Histoquímica , Limbo da Córnea/citologia , Limbo da Córnea/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptor EphA2/fisiologia , Células-Tronco/citologia
7.
PLoS One ; 10(6): e0130692, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083390

RESUMO

Members of the Eph family of receptor tyrosine kinases and their membrane bound ephrin ligands have been shown to play critical roles in many developmental processes and more recently have been implicated in both normal and pathological processes in post-embryonic tissues. In particular, expression studies of Eph receptors and limited functional studies have demonstrated a role for the Eph/ephrin system in hematopoiesis and leukemogenesis. In particular, EphA2 was reported on hematopoietic stem cells and stromal cells. There are also reports of EphA2 expression in many different types of malignancies including leukemia, however there is a lack of knowledge in understanding the role of EphA2 in hematopoiesis and leukemogenesis. We explored the role of EphA2 in hematopoiesis by analyzing wild type and EphA2 knockout mice. Mature, differentiated cells, progenitors and hematopoietic stem cells derived from knockout and control mice were analyzed and no significant abnormality was detected. These studies showed that EphA2 does not have an obligatory role in normal hematopoiesis. Comparative studies using EphA2-negative MLL-AF9 leukemias derived from EphA2-knockout animals showed that there was no detectable functional role for EphA2 in the initiation or progression of the leukemic process. However, expression of EphA2 in leukemias initiated by MLL-AF9 suggested that this protein might be a possible therapy target in this type of leukemia. We showed that treatment with EphA2 monoclonal antibody IF7 alone had no effect on tumorigenicity and latency of the MLL-AF9 leukemias, while targeting of EphA2 using EphA2 monoclonal antibody with a radioactive payload significantly impaired the leukemic process. Altogether, these results identify EphA2 as a potential radio-therapeutic target in leukemias with MLL translocation.


Assuntos
Anticorpos Monoclonais/farmacologia , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia/terapia , Radioimunoterapia , Receptor EphA2/fisiologia , Animais , Diferenciação Celular , Feminino , Citometria de Fluxo , Rearranjo Gênico , Células-Tronco Hematopoéticas/citologia , Leucemia/genética , Leucemia/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor EphA2/antagonistas & inibidores , Translocação Genética
8.
J Proteome Res ; 14(6): 2617-25, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25963923

RESUMO

Tyrosine kinase inhibitors (TKIs) have become an important therapeutic option for treating several forms of cancer. Gefitinib, an inhibitor of the epidermal growth factor receptor (EGFR), is in clinical use for treating non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. However, despite high initial response rates, many patients develop resistance to gefitinib. The molecular mechanisms of TKI resistance often remain unclear. Here, we describe a chemical proteomic approach comprising kinase affinity purification (kinobeads) and quantitative mass spectrometry for the identification of kinase inhibitor resistance mechanisms in cancer cells. We identified the previously described amplification of MET and found EPHA2 to be more than 10-fold overexpressed (p < 0.001) in gefitinib-resistant HCC827 cells suggesting a potential role in developing resistance. siRNA-mediated EPHA2 knock-down or treating cells with the multikinase inhibitor dasatinib restored sensitivity to gefitinib. Of all dasatinib targets, EPHA2 exhibited the most drastic effect (p < 0.001). In addition, EPHA2 knockdown or ephrin-A1 treatment of resistant cells decreased FAK phosphorylation and cell migration. These findings confirm EPHA2 as an actionable drug target, provide a rational basis for drug combination approaches, and indicate that chemical proteomics is broadly applicable for the discovery of kinase inhibitor resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Proteômica , Receptor EphA2/fisiologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
9.
Cancer Res ; 74(9): 2444-54, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24607842

RESUMO

Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here, we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a c-JUN-NH2-kinase (JNK) inhibitor, recapitulated defects in EPHA2-deficient tumor cells, whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells (CSC). RNA interference-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH(+) cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH(+) populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung CSCs. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in CSC function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. Cancer Res; 74(9); 2444-54. ©2014 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/enzimologia , Sistema de Sinalização das MAP Quinases , Células-Tronco Neoplásicas/enzimologia , Receptor EphA2/fisiologia , Aldeído Desidrogenase/metabolismo , Animais , Antracenos/farmacologia , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fosforilação , Processamento de Proteína Pós-Traducional , Carga Tumoral
10.
Oncogene ; 33(21): 2737-47, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23752181

RESUMO

This study aims to investigate the significance of erythropoietin-producing hepatocellular (Eph)A2 expression and the mechanism by which EphA2 is involved in the epithelial-mensenchymal transition (EMT) of gastric cancer cells. EphA2 expression levels were upregulated and positively correlated with metastasis and EMT markers in human gastric cancer specimens. Modulation of EphA2 expression levels had distinct effects on cell proliferation, cell cycle, migration, invasion and morphology in the gastric cancer cell lines SGC7901 and AGS in vitro and in vivo. Overexpression of EphA2 resulted in the upregulation of the EMT molecular markers N-cadherin and Snail, as well as the Wnt/ß-catenin targets TCF4, Cyclin-D1 and c-Myc, while silencing EphA2 using short hairpin RNA had the opposite effect. Furthermore, inhibition of the Wnt/ß-catenin pathway by XAV939 negated the effect of EphA2 overexpression, whereas activation of the Wnt/ß-catenin pathway by LiCl impaired the effect of the EphA2 knockdown on EMT. These observations demonstrate that EphA2 upregulation is a common event in gastric cancer specimens that is closely correlated with cancer metastasis and that EphA2 promotes EMT of gastric cancer cells through activation of Wnt/ß-catenin signaling.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/enzimologia , Receptor EphA2/fisiologia , Neoplasias Gástricas/enzimologia , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Mucosa Gástrica/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Fatores de Transcrição da Família Snail , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Carga Tumoral , Regulação para Cima , Via de Sinalização Wnt , beta Catenina/metabolismo
11.
Artigo em Chinês | MEDLINE | ID: mdl-23755789

RESUMO

OBJECTIVE: To investigate the regulatory effect of erythropoietin-producing hepatocellular receptor (EphA2) on the expression of VEGF protein, a pro-angiogenic factor, via p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway in squamous cell carcinoma of the head and neck(SCCHN) in vitro. METHODS: SCCHN Tu686 cells were transfected with EphA2 overexpression vector pEGFP-N1-EphA2. Western blot was used to detect the expression of p38 MAPK and enzyme-linked immunosorbent assay (ELISA) was applied to assay of VEGF. SB203580 as a inhibitor of p38 MAPK signaling pathway was used. RESULTS: The expression of VEGF protein was significantly up-regulated in Tu686 cells transfected with EphA2 overexpression vector (535.31 ± 45.71) pg/ml, when compared with Tu686 cells transfected with empty vector (400.99 ± 33.50) pg/ml and Tu686 cells with no transfection (385.30 ± 33.50) pg/ml (F = 17.091, P < 0.01). The expression of phosphorylated p38 MAPK was obviously increased in Tu686 cells with EphA2 overexpression. SB203580 inhibited the expressions of VEGF and phosphorylated p38 MAPK proteins in Tu686 cells with EphA2 overexpression. CONCLUSION: EphA2 can regulate the expression of VEGF protein and stimulate p38 MAPK signaling pathway.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Sistema de Sinalização das MAP Quinases , Receptor EphA2/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/farmacologia , Piridinas/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Surgery ; 152(6): 1218-24, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23158188

RESUMO

BACKGROUND: EphA2 is a tyrosine kinase receptor that is overexpressed in many cancers and is associated with poor prognosis and increased metastasis. Phosphorylated Akt (pAkt) plays a role in the regulation of thyroid cancer invasion and metastasis. We investigated the role of EphA2 and Akt in FTC-133 and FTC-238, 2 closely related human cell lines with differing invasive phenotypes. METHODS: Western blot was used to measure the total protein expression in cell lines, and immunohistochemistry was performed on thyroid tissue microarrays. Thyroid cell lines were transfected with siRNA or cDNA. Invasion assays were performed using Matrigel chambers, and invaded cells were assayed with (3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT). RESULTS: EphA2 protein was expressed in thyroid cancer cell lines and in benign and malignant human thyroid tumors but not in normal thyroid. Compared with FTC-133, FTC-238 expressed fivefold more EphA2 protein and had a fivefold increase in invasion (P < .001). In FTC-238, EphA2 siRNA decreased EphA2 levels and reduced invasion, with a decrease in pAkt protein. Overexpression of EphA2 in FTC-133 increased invasion and increased pAkt protein. Akt siRNA and Akt inhibitors decreased pAkt levels and invasion without changing EphA2 levels. CONCLUSION: EphA2 is expressed in human thyroid cancer and mediates invasion in the follicular thyroid cell lines FTC-133 and -238. Phosphorylated Akt (pAkt), an important regulator of thyroid cancer metastasis, is attenuated by EphA2 knockdown, providing evidence that EphA2 may act through pAkt to mediate invasion. EphA2 and pAkt may be candidates for targeted therapy against metastatic thyroid cancer.


Assuntos
Adenocarcinoma Folicular/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptor EphA2/fisiologia , Neoplasias da Glândula Tireoide/fisiopatologia , Adenocarcinoma Folicular/metabolismo , Linhagem Celular Tumoral , Humanos , Immunoblotting , Invasividade Neoplásica/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/farmacologia , Neoplasias da Glândula Tireoide/metabolismo , Células Tumorais Cultivadas
14.
Nat Med ; 18(6): 961-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22635007

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma(1), a highly vascularized tumor originating from lymphatic endothelial cells, and of at least two different B cell malignancies(2,3). A dimeric complex formed by the envelope glycoproteins H and L (gH-gL) is required for entry of herpesviruses into host cells(4). We show that the ephrin receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV gH-gL. EphA2 co-precipitated with both gH-gL and KSHV virions. Infection of human epithelial cells with a GFP-expressing recombinant KSHV strain, as measured by FACS analysis, was increased upon overexpression of EphA2. Antibodies against EphA(2) and siRNAs directed against EphA2 inhibited infection of endothelial cells. Pretreatment of KSHV with soluble EphA2 resulted in inhibition of KSHV infection by up to 90%. This marked reduction of KSHV infection was seen with all the different epithelial and endothelial cells used in this study. Similarly, pretreating epithelial or endothelial cells with the soluble EphA2 ligand ephrinA4 impaired KSHV infection. Deletion of the gene encoding EphA2 essentially abolished KSHV infection of mouse endothelial cells. Binding of gH-gL to EphA2 triggered EphA2 phosphorylation and endocytosis, a major pathway of KSHV entry(5,6). Quantitative RT-PCR and in situ histochemistry revealed a close correlation between KSHV infection and EphA2 expression both in cultured cells derived from human Kaposi's sarcoma lesions or unaffected human lymphatic endothelium, and in situ in Kaposi's sarcoma specimens, respectively. Taken together, our results identify EphA2, a tyrosine kinase with known functions in neovascularization and oncogenesis, as an entry receptor for KSHV.


Assuntos
Herpesvirus Humano 8/fisiologia , Receptor EphA2/fisiologia , Receptores Virais/fisiologia , Animais , Linhagem Celular , Endocitose , Humanos , Camundongos , Fosforilação , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/fisiologia
15.
Neoplasma ; 59(1): 105-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22103904

RESUMO

Receptor tyrosine kinases (RTKs), the common products of transforming oncogenes, have been widely used as indicators in the genesis and progression of human tumors. Until now, the erythropoietin-producing human hepatocellular (Eph) receptors have been recognized as the largest family of RTKs. EphA2, one member of Eph receptors, locates on human chromosome 1p36.1 which is a hot region for cancer research. It has been reported that high EphA2 expression levels were correlated with the tumor metastasis and poor prognosis. Increased expression of EphA2 can promote tumor growth and enhance the metastatic potential. To further define the function of EphA2 in malignant invasion, we employed the small interference RNA (siRNA) technique to knockdown gene expression of EphA2 in the gastric cancer SGC-7901 cell. Our results showed that the expression of double stranded RNA led to the efficient and specific inhibition of endogenous EphA2 expression in SGC-7901 cells. Silencing of EphA2 expression inhibited cell proliferation, caused cell cycle arrest, and decreased cell invasion in vitro. In addition, intratumoral injection EphA2 siRNA plasmid suppressed the growth of SGC-7901 cells xenografts in nude mice. Furthermore, knockdown of EphA2 expression reduced the expression of matrix metalloproteinase-9 (MMP-9) in vitro and in vivo. In conclusion, our findings demonstrate that silencing of EphA2 inhibits gastric cancer SGC-7901 cell proliferation, invasion and MMP-9 expression, which indicate that the specific inhibition of EphA2 may be a potential approach for gastric cancer therapy.


Assuntos
Adenocarcinoma/patologia , Terapia Genética , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Receptor EphA2/antagonistas & inibidores , Neoplasias Gástricas/patologia , Adenocarcinoma/genética , Adenocarcinoma/terapia , Animais , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/patologia , Linhagem Celular Tumoral/transplante , Regulação para Baixo , Indução Enzimática/efeitos dos fármacos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/uso terapêutico , Humanos , Lipossomos , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , RNA Interferente Pequeno/uso terapêutico , Distribuição Aleatória , Receptor EphA2/genética , Receptor EphA2/fisiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Med Oncol ; 29(4): 2691-700, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22189617

RESUMO

The expression of EphA2 and three epithelial-mesenchymal transition-related proteins (E-cadherin, ß-catenin and vimentin) was detected by immunohistochemistry in human gastric cancer and normal gastric mucosa. The expression of EphA2 and vimentin was significantly higher in gastric cancer tissues than in normal gastric mucosa tissues, and similar results were found for negative E-cadherin expression and ectopic ß-catenin expression. Further analysis showed that the expression of EphA2 was closely correlated with the depth of tumor invasion, tumor-node-metastasis (TNM) stages and lymph node metastasis. Down-regulated expression of the epithelial protein E-cadherin, overexpression of the mesenchymal protein vimentin and ectopic expression of ß-catenin were associated with the depth of tumor invasion, tumor differentiation, TNM stages and lymph node metastasis. The Spearman rank test indicated that the positive expression of EphA2 was negatively associated with E-cadherin expression and was positively correlated with ß-catenin ectopic expression and vimentin expression. In addition, the Kaplan-Meier survival analysis showed that the overexpression of EphA2 and vimentin, ectopic expression of ß-catenin and down-regulation of E-cadherin indicate a poor outcome. Moreover, multivariate Cox analysis showed that TNM stages, lymph node metastasis, EphA2 expression, E-cadherin expression and ß-catenin ectopic expression were independent prognostic factors for postoperative gastric cancer. These findings indicate that the overexpression of EphA2 correlates with the loss of epithelial proteins and the appearance of mesenchymal proteins. Therefore, EphA2 may play a role in epithelial-mesenchymal transition in gastric cancer.


Assuntos
Transição Epitelial-Mesenquimal , Receptor EphA2/fisiologia , Neoplasias Gástricas/patologia , Adulto , Idoso , Caderinas/análise , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Receptor EphA2/análise , Neoplasias Gástricas/química , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/cirurgia , Vimentina/análise , beta Catenina/análise
17.
J Huazhong Univ Sci Technolog Med Sci ; 31(6): 824-827, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22173506

RESUMO

The effect of axon guidance factors ephrin-A1/EphA2 on the invasion of trophoblastic cells and the possible mechanism were investigated in this study. The expression of EphA2 in vascular endothelial cells was detected by immunohistochemistry. The proliferation and invasion of TEV-1 cells (an extravillous trophoblastic cell line) in first trimester were determined by cell counting kit-8 (CCK-8) and Transwell invasion assay. Real-time PCR was used to detect the expression of ephrin-A1 in TEV-1 cells treated with EphA2 at different concentrations (10, 50, 100, 500, 1000 and 5000 µg/L). The results showed: (1) EphA2 was expressed in the vascular endothelial cells; (2) EphA2 could promote the proliferation of TEV-1 cells. The proliferative capacity reached a peak in TEV-1 cells treated with 100 µg/L EphA2 (P<0.05); (3) EphA2 could increase the invasion of TEV-1 cells. The invasive ability was the greatest in TEV-1 cells treated with 500 µg/L EphA2 (P<0.05); (4) in the presence of EphA2 (0-500 µg/L), the expression of ephrin-A1 was increased concentration-dependently (P<0.05), but when the concentration of EphA2 was over 500 µg/L, the expression of ephrin-A1 ceased to increase (P>0.05). It was concluded that EphA2 can promote the invasion and proliferation of the human extravillous trophoblastic cells probably by regulating the ephrin-A1 ligand.


Assuntos
Células Endoteliais/metabolismo , Efrina-A1/fisiologia , Receptor EphA2/fisiologia , Trofoblastos/fisiologia , Linhagem Celular , Proliferação de Células , Vilosidades Coriônicas/metabolismo , Vilosidades Coriônicas/fisiologia , Efrina-A1/biossíntese , Feminino , Humanos , Neovascularização Fisiológica , Gravidez , Primeiro Trimestre da Gravidez , Receptor EphA2/metabolismo , Trofoblastos/citologia
18.
Microvasc Res ; 82(2): 113-21, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21726568

RESUMO

Eph receptor tyrosine kinases and ephrin ligands participate in the regulation of a wide variety of biological processes, such as axon guidance, synaptic plasticity, angiogenesis, and tumorigenesis. The role of Eph receptors and ephrin ligands in brain endothelial cells remains unknown. Here, we examined the expression profile of EphA receptors and ephrin-A ligands in human brain microvascular endothelial cell line (HBMEC). Our results showed that multiple EphA receptors and ephrin-A ligands are expressed in HBMEC. We found that the phosphorylation of EphA2, but not other EphA receptors, was significantly increased in HBMEC treated with recombinant ephrin-A1/Fc. Meanwhile, elevated EphA2 phosphorylation was accompanied by disassembly of tight junctions in HBMEC. Furthermore, EphA2 RNAi in HBMEC could promote tight junction formation and prevent the ephrin-A1-induced tight junction disruption. Also, when a kinase-inactive mutant of EphA2 (EphA2-K646M) was expressed in HBMEC, the tight junction was enhanced and the ephrin-A1-induced tight junction disruption was blocked. In addition, EphA2 RNAi and expression of EphA2-K646M in HBMEC inhibited in vitro cell migration and angiogenesis of HBMEC. These data indicated an important role of EphA2 in regulating both tight junction formation and angiogenesis in brain endothelial cells.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Células Endoteliais/citologia , Microcirculação , Neovascularização Patológica , Receptor EphA2/metabolismo , Junções Íntimas/metabolismo , Regulação da Expressão Gênica , Humanos , Ligantes , Permeabilidade , Fosforilação , Interferência de RNA , Receptor EphA2/fisiologia , Frações Subcelulares , Cicatrização
19.
Nat Med ; 17(5): 589-95, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21516087

RESUMO

Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2 as host cofactors for HCV entry. Blocking receptor kinase activity by approved inhibitors broadly impaired infection by all major HCV genotypes and viral escape variants in cell culture and in a human liver chimeric mouse model in vivo. The identified receptor tyrosine kinases (RTKs) mediate HCV entry by regulating CD81-claudin-1 co-receptor associations and viral glycoprotein-dependent membrane fusion. These results identify RTKs as previously unknown HCV entry cofactors and show that tyrosine kinase inhibitors have substantial antiviral activity. Inhibition of RTK function may constitute a new approach for prevention and treatment of HCV infection.


Assuntos
Receptores ErbB/fisiologia , Hepacivirus/fisiologia , Hepatite C/fisiopatologia , Hepatite C/virologia , Receptor EphA2/fisiologia , Internalização do Vírus , Animais , Antígenos CD/fisiologia , Antivirais/farmacologia , Sequência de Bases , Linhagem Celular , Claudina-1 , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Cloridrato de Erlotinib , Hepacivirus/efeitos dos fármacos , Hepatite C/prevenção & controle , Hepatite C/terapia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Ligantes , Proteínas de Membrana/fisiologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/genética , Tetraspanina 28 , Internalização do Vírus/efeitos dos fármacos
20.
Hum Reprod ; 26(5): 1163-70, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21349856

RESUMO

BACKGROUND: Recently, the Eph-ephrinA system was proposed to contribute to the initial interaction between the maternal endometrial epithelium and embryonic trophectoderm. Since the Eph-ephrin interaction can induce adhesive and/or repulsive forces into the cells, we examined the possible role of this system in functional changes in endometrial epithelial cells using endometrial carcinoma-derived Ishikawa cells. METHODS: The expressions of EphA1, A2 and A4 on Ishikawa cells were examined by RT-PCR and western blotting analyses. The effects of recombinant ephrinA1 on Ishikawa cells were also examined by western blot analysis and cell attachment and aggregation assays. RESULTS: EphA1, A2 and A4 were expressed on Ishikawa cells. Recombinant ephrinA1 bound to the surfaces of Ishikawa cells and induced phosphorylation of EphA2 and A4. In bovine serum albumin-blocked nitrocellulose-coated dishes, Ishikawa cells remained floating and aggregated with each other. Under these conditions, immobilized ephrinA1 promoted Ishikawa cell attachment with increased tyrosine phosphorylation in focal adhesion kinase. In addition, immobilized ephrinA1 reversibly inhibited Ishikawa cell aggregation. Gene-reduction of EphA1, A2 and A4 by siRNAs attenuated the inhibitory effects of ephrinA1 on cell aggregation, confirming that ephrinA1 affects Ishikawa cell functions through Eph-ephrinA interaction. CONCLUSIONS: This study demonstrated that the Eph-ephrinA system can promote cell attachment along with intercellular dissociation in Ishikawa cells. These findings suggest that this system can induce functional changes in endometrial epithelial cells.


Assuntos
Adesão Celular/fisiologia , Agregação Celular/fisiologia , Efrina-A1/fisiologia , Receptores da Família Eph/fisiologia , Animais , Linhagem Celular , Efrina-A1/genética , Efrina-A1/metabolismo , Feminino , Humanos , Camundongos , Fosforilação , Receptor EphA1/metabolismo , Receptor EphA1/fisiologia , Receptor EphA2/metabolismo , Receptor EphA2/fisiologia , Receptor EphA4/metabolismo , Receptor EphA4/fisiologia , Receptores da Família Eph/metabolismo , Proteínas Recombinantes de Fusão , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...